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Abstract— The classical Grothendieck constant, denoted KG,
is equal to the integrality gap of the natural semidefinite relaxation
of the problem of computing

max

{
m∑
i=1

n∑
j=1

aijεiδj : {εi}mi=1, {δj}nj=1 ⊆ {−1, 1}
}
,

a generic and well-studied optimization problem with many appli-
cations. Krivine proved in 1977 that KG � π

2 log(1+
√
2)

and conjec-

tured that his estimate is sharp. We obtain a sharper Grothendieck
inequality, showing that KG < π

2 log(1+
√
2)
− ε0 for an explicit

constant ε0 > 0. Our main contribution is conceptual: despite
dealing with a binary rounding problem, random 2-dimensional
projections combined with a careful partition of R

2 in order to
round the projected vectors, beat the random hyperplane technique,
contrary to Krivine’s long-standing conjecture.

1. INTRODUCTION

In his 1953 Resumé [6], Grothendieck proved a theo-

rem that he called “le théorème fondamental de la théorie

metrique des produits tensoriels”. This result is known

today as Grothendieck’s inequality. An equivalent formu-

lation of Grothendieck’s inequality, due to Lindenstrauss

and Pełczyński [14], states that there exists a universal

constant K ∈ (0,∞) such that for every m,n ∈ N, every

m × n matrix (aij) with real entries, and every m + n
unit vectors x1, . . . , xm, y1, . . . , yn ∈ Sm+n−1, there exist

ε1, . . . , εm, δ1, . . . , δn ∈ {−1, 1} satisfying

m∑
i=1

n∑
j=1

aij〈xi, yj〉 � K
m∑
i=1

n∑
j=1

aijεiδj . (1)

Here 〈·, ·〉 denotes the standard scalar product on R
m+n. The

infimum over those K ∈ (0,∞) for which (1) holds true is

called the Grothendieck constant, and is denoted KG.

Grothendieck’s inequality is important to several disci-

plines, including the geometry of Banach spaces, C∗ al-

gebras, harmonic analysis, operator spaces, quantum me-

chanics, and computer science. Rather than attempting to
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explain the ramifications of Grothendieck’s inequality, we

refer to Pisier’s survey [15] and the references therein.

The forthcoming survey [9] is devoted to Grothendieck’s

inequality in computer science; Section 2 below contains a

brief discussion of this topic.

Problem 3 of Grothendieck’s Resumé asks for the deter-

mination of the exact value of KG. This problem remains

open despite major effort by many mathematicians. In fact,

even though KG occurs in numerous mathematical theo-

rems, and has equivalent interpretations as a key quantity

in physics [20], [4] and computer science [1], [17], we

currently do not even know what the second digit of KG is;

the best known bounds [12], [18] are KG ∈ (1.676, 1.783).
Following the upper bounds on KG obtained in [6], [14],

[19], progress on this problem halted after a beautiful 1977

theorem of Krivine [12], who proved that

KG � π

2 log
(
1 +

√
2
) (= 1.782...). (2)

One reason for this lack of improvement since 1977 is that

Krivine conjectured [12], [11] that his bound is actually the

exact value of KG. Here we prove that Krivine’s conjecture

is false, thus obtaining the best known upper bound on KG.

Theorem 1.1: There exists ε0 > 0 such that

KG <
π

2 log
(
1 +

√
2
) − ε0.

We stress that our proof is effective, and it readily yields a

concrete positive lower bound on ε0. We chose not to state an

explicit new upper bound on the Grothendieck constant since

we know that our estimate is suboptimal. Section 3 below

contains a discussion of potential improvements of our

bound, based on challenging open problems that conceivably

might even lead to an exact evaluation of KG.

Remark 1.1: There has also been major effort to estimate
the complex Grothendieck constant [6], [3], [16]; the best
known upper bound in this case is due to Haagerup [8].
We did not investigate this issue here, partly because for
complex scalars there is no clean conjectured exact value of
the Grothendieck constant in the spirit of Krivine’s conjec-
ture. Nevertheless, it is conceivable that our approach can
improve Haagerup’s bound on the complex Grothendieck



constant as well. We leave this research direction open for
future investigations.

In our opinion, the interest in the exact value of KG does

not necessarily arise from the importance of this constant

itself, though the reinterpretation of KG as a fundamental

constant in physics and computer science makes it even more

interesting to know at least its first few digits. Rather, we

believe that it is very interesting to understand the geomet-

ric configuration of unit vectors x1, . . . , xm, y1, . . . , yn ∈
Sm+n−1 (and matrix aij) which make the inequality (1)

“most difficult”. This issue is related to the “rounding

problem” in theoretical computer science; see Section 2.

With this in mind, Krivine’s conjecture corresponds to

a natural geometric intuition about the worst spherical

configuration for Grothendieck’s inequality. This geometric

picture has been crystalized and cleanly formulated as an

extremal analytic/geometric problem due to the works of

Haagerup, König, and Tomczak-Jaegermann. We shall now

explain this issue, since one of the main conceptual conse-

quences of Theorem 1.1 is that the geometric picture behind

Grothendieck’s inequality that was previously believed to be

true, is actually false. Along the way, we resolve a conjecture

of König [10].

1.1. König’s problem

One can reformulate Grothendieck’s inequality using in-

tegral operators (see [10]). Given a measure space (Ω, μ)
and a kernel K ∈ L1(Ω × Ω, μ × μ), consider the integral

operator TK : L∞(Ω, μ)→ L1(Ω, μ) induced by K, i.e.,

TKf(x)
def
=

∫
Ω

f(y)K(x, y)dμ(y).

Grothendieck’s inequality asserts that for every f, g ∈
L∞(Ω, μ; �2), i.e., two bounded measurable functions with

values in Hilbert space,∫
Ω

∫
Ω

K(x, y)〈f(x), g(y)〉dμ(x)dμ(y)

� KG ‖TK‖L∞(Ω,μ)→L1(Ω,μ) ‖g‖L∞(Ω,μ;�2)‖f‖L∞(Ω,μ;�2).

(3)

König [10], citing unpublished computations of Haagerup,

asserts that the assumption KG = π/
(
2 log

(
1 +

√
2
))

sug-

gests that the oscillatory Gaussian kernel K : Rn×R
n → R

given by

K(x, y)
def
= exp

(
−‖x‖

2
2 + ‖y‖22
2

)
sin(〈x, y〉) (4)

should be extremal for Grothendieck’s inequality in the

asymptotic sense, i.e., for n→∞. In the rest of this paper

K will always stand for the kernel appearing in (4), and the

corresponding bilinear form BK : L∞(Rn)×L∞(Rn)→ R

will be given by

BK(f, g)
def
=

∫
Rn

∫
Rn

f(x)g(y)K(x, y)dxdy. (5)

The above discussion led König to make the following

conjecture:

Conjecture 1.2 (König [10]): Define f0 : Rn → {−1, 1}
by f0(x1, . . . , xn) = sign(x1). Then BK(f, g) �
BK(f0, f0) for every n ∈ N and every measurable f, g :
R

n → {−1, 1}.
In [10] the following result of König and Tomczak-

Jaegermann is proved:

Proposition 1.2 (König and Tomczak-Jaegermann [10]):
A positive answer to Conjecture 1.2 would imply that

KG = π

2 log(1+
√
2)

.

Proposition 1.2 itself can be viewed as motivation for

Conjecture 1.2, since it is consistent with Haagerup’s work

and Krivine’s conjecture. But, there are additional reasons

why Conjecture 1.2 is natural. First of all, we know due to

Lieb’s work [13] that general Gaussian kernels, when viewed

as operators from Lp(R
n) to Lq(R

n), have only Gaussian

maximizers provided p and q satisfy certain conditions.

The kernel K does not fit into Lieb’s framework, since it

is the imaginary part of a Gaussian kernel (the Gaussian

Fourier transform) rather than an actual Gaussian kernel,

and moreover the range p = ∞ and q = 1 is not covered

by Lieb’s theorem. Nevertheless, in light of Lieb’s theorem

one might expect that maximizers of kernels of this type

have a simple structure, which could be viewed as a weak

justification of Conjecture 1.2. A much more substantial jus-

tification of Conjecture 1.2 is that in [10] König announced

an unpublished result that he obtained jointly with Tomczak-

Jaegermann asserting that Conjecture 1.2 is true for n = 1.

Theorem 1.3: For every Lebesgue measurable f, g : R→
{−1, 1} we have∫

R

∫
R

f(x)g(y)e−
x2+y2

2 sin(xy)dxdy

�
∫
R

∫
R

sign(x)sign(y)e−
x2+y2

2 sin(xy)dxdy (6)

= 2
√
2 log

(
1 +

√
2
)
.

Moreover, equality in (6) is attained only when f(x) =
g(x) = sign(x) almost everywhere or f(x) = g(x) =
−sign(x) almost everywhere.

We believe that it is important to have a published proof

of Theorem 1.3, and for this reason we prove it in the full

version of this paper. Conceivably our proof is similar to

the unpublished proof of König and Tomczak-Jaegermann,

though they might have found a different explanation of this

phenomenon. Since Theorem 1.1 combined with Proposi-

tion 1.2 implies that König’s conjecture is false, and as we



shall see it is false already for n = 2, Theorem 1.3 highlights

special behavior of the one dimensional case.

Our proof of Theorem 1.1 starts by disproving König’s

conjecture for n = 2. This is done in Section 4. Obtaining

an improved upper bound on the Grothendieck constant

requires a substantial amount of additional work that uses

the counterexample to Conjecture 1.2. This is carried out in

Section 5. The failure of König’s conjecture shows that the

situation is more complicated than originally hoped, and in

particular that for n > 1 the maximizers of the kernel K
have a truly high-dimensional behavior. This more compli-

cated geometric picture highlights the availability of high

dimensional rounding schemes that are more sophisticated

(and better) than “hyperplane rounding”. These issues are

discussed in Section 2 and Section 3.

2. KRIVINE-TYPE ROUNDING SCHEMES AND

ALGORITHMIC IMPLICATIONS

Consider the following optimization problem. Given an

m × n matrix A = (aij), compute in polynomial time the

value

OPT(A)
def
= max

ε1,...,εm,δ1,...,δn∈{−1,1}

m∑
i=1

n∑
j=1

aijεiδj . (7)

We refer to [1], [9] for a discussion of the combinatorial

significance of this problem. It suffices to say here that

it relates to the problem of computing efficiently the Cut

Norm of a matrix, which is a subroutine in a variety of

applications, starting with the pioneering work of Frieze and

Kannan [5]. Special choices of matrices A in (7) lead to

specific problems of interest, including efficient construction

of Szemerédi partitions [1].

As shown in [1], there is no PTAS for the problem unless

P = NP. But, since the quantity

SDP(A)
def
= max

x1,...,xm,y1,...,yn∈Sm+n−1

m∑
i=1

n∑
j=1

aij〈xi, yj〉

can be computed in polynomial time with arbitrarily good

precision (it is a semidefinite program [7]), Grothendieck’s

inequality tells us that the polynomial time algorithm that

outputs the number SDP(A) is always within a factor of

KG of OPT(A).
Remarkably, the work of Raghavendra and Steurer [17]

shows that KG has a complexity theoretic interpretation:

no polynomial time algorithm can approximate OPT(A) to

within a factor smaller than KG assuming the Unique Games

Conjecture. Note that Raghavendra and Steurer manage to

prove this result despite the fact that the value of KG is

unknown.

Theorem 1.1 yields the first improved upper bound on

the Unique Games hardness threshold of the OPT(A)
computation problem since Krivine’s 1977 bound. As we

shall see, what hides behind Theorem 1.1 is also a new

algorithmic method which is of independent interest. To

explain this, note that the above discussion dealt with

the problem of computing the number OPT(A). But it

is actually of greater interest to find in polynomial time

signs ε1, . . . , εm, δ1, . . . , δn ∈ {−1, 1} from among all such

2m+n choices of signs, for which
∑m

i=1

∑n
j=1 aijεiδj is

at least a constant multiple OPT(A). This amounts to a

“rounding problem”: we need to find a procedure that, given

vectors x1, . . . , xm, y1, . . . , yn ∈ Sm+n−1, produces signs

ε1, . . . , εm, δ1, . . . , δn ∈ {−1, 1} whose existence is ensured

by Grothendieck’s inequality (1).

Krivine’s proof of (2) is based on a clever two-step

rounding procedure. We shall now describe a generalization

of Krivine’s method.

Definition 2.1 (Krivine rounding scheme): Fix k ∈ N

and assume that we are given two odd measurable functions

f, g : R
k → {−1, 1}. Let G1, G2 ∈ R

k be independent

random vectors that are distributed according to the standard

Gaussian measure on R
k, i.e., the measure with density

x 	→ e−‖x‖
2
2/2/(2π)k/2. For t ∈ (−1, 1) define

Hf,g(t)
def
= (8)

E

[
f

(
1√
2
G1

)
g

(
t√
2
G1 +

√
1− t2√

2
G2

)]
=

1

πk(1− t2)k/2

∫
Rk

∫
Rk

f(x)g(y)e
−‖x‖22−‖y‖22+2t〈x,y〉

1−t2 dxdy.

Then Hf,g extends to an analytic function on the strip

{z ∈ C : 
(z) ∈ (−1, 1)}. We shall call {f, g} a Krivine

rounding scheme if Hf,g is invertible on a neighborhood of

the origin, and if we consider the Taylor expansion

H−1
f,g(z) =

∞∑
j=0

a2j+1z
2j+1 (9)

then there exists c = c(f, g) ∈ (0,∞) satisfying

∞∑
j=0

|a2j+1|c2j+1 = 1. (10)

(Only odd Taylor coefficients appear in (9) since Hf,g, and

therefore also H−1
f,g , is odd.)

Definition 2.2 (Alternating Krivine rounding scheme):
A Krivine rounding scheme {f, g} is called an alternating

Krivine rounding scheme if the coefficients {a2j+1}∞j=0 ⊆ R

in (9) satisfy sign(a2j+1) = (−1)j for all j ∈ N∪{0}. Note

that in this case equation (10) becomes H−1
f,g(ic)/i = 1, or

c(f, g) =
Hf,g(i)

i

(4)∧(5)∧(8)
=

BK(f, g)(√
2π

)k . (11)

Given a Krivine rounding scheme f, g : Rk → {−1, 1}
and x1, . . . , xm, y1, . . . , yn ∈ Sm+n−1, the (generalized)

Krivine rounding method proceeds via the following two

steps.



Step 1 (preprocessing the vectors). Consider the Hilbert

space

H =
∞⊕
j=0

(
R

m+n
)⊗(2j+1)

.

For x ∈ Sm+n−1 we can then define two vectors

I(x), J(x) ∈ H by

I(x)
def
=

∞∑
j=0

|a2j+1|1/2c(2j+1)/2x⊗(2j+1) (12)

and

J(x)
def
=

∞∑
j=0

sign(a2j+1)|a2j+1|1/2c(2j+1)/2x⊗(2j+1),

(13)

where c = c(f, g). The choice of c was made in order to

ensure that I(x) and J(x) are unit vectors in H. Moreover,

the definitions (12) and (13) were made so that the following

identity holds:

〈I(x), J(y)〉H = H−1
f,g(c〈x, y〉), (14)

for all x, y ∈ Sm+n−1. The preprocessing step

of the Krivine rounding method transforms the initial

unit vectors {xr}mr=1, {ys}ns=1 ⊆ Sm+n−1 to vectors

{ur}mr=1, {vs}ns=1 ⊆ Sm+n−1 satisfying the identities

〈ur, vs〉 = 〈I(xr), J(ys)〉H (14)
= H−1

f,g(c〈xr, ys〉), (15)

for all r ∈ {1, . . . ,m} and s ∈ {1, . . . , n}. As explained

in [1], these new vectors can be computed efficiently pro-

vided H−1
f,g can be computed efficiently; this simply amounts

to computing a Cholesky decomposition.

Step 2 (random projection). Let G : R
m+n → R

k be

a random k × (m + n) matrix whose entries are i.i.d.

standard Gaussian random variables. Define random signs

σ1, . . . , σm, τ1, . . . , τn ∈ {−1, 1} by

σr
def
= f

(
1√
2
Gur

)
and τs

def
= g

(
1√
2
Gvs

)
, (16)

for all r ∈ {1, . . . ,m} and s ∈ {1, . . . , n}.
Having obtained the random signs

σ1, . . . , σm, τ1, . . . , τn ∈ {−1, 1} as in (16), for every

m× n matrix (ars) we have

max
ε1,...,εm∈{−1,1}
δ1,...,δn∈{−1,1}

m∑
r=1

n∑
s=1

arsεrδs � E

[
m∑
r=1

n∑
s=1

arsσrτs

]

(♣)
= E

[
m∑
r=1

n∑
s=1

arsHf,g (〈ur, vs〉)
]

(15)
= c(f, g)

m∑
r=1

n∑
s=1

ars〈xr, ys〉,

where (♣) follows by rotation invariance from (16) and (8).

We have thus proved the following corollary, which yields

a systematic way to bound the Grothendieck constant from

above.

Corollary 2.3: Assume that f, g : R
k → {−1, 1} is a

Krivine rounding scheme. Then

KG � 1

c(f, g)
.

Krivine’s proof of (2) corresponds to Corollary 2.3 when

k = 1 and f(x) = g(x) = sign(x). In this case

{f, g} is an alternating Krivine rounding scheme with

Hf,g(t) = 2
π arcsin(t) (Grothendieck’s identity). By (11)

we have c(f, g) = 2
πi arcsin(i) = 2

π log
(
1 +

√
2
)
, so that

Corollary 2.3 does indeed correspond to Krivine’s bound (2).

One might expect that, since we want to round

vectors x1, . . . , xm, y1, . . . , yn ∈ Sm+n−1 to signs

ε1, . . . , εm, δ1, . . . , δn ∈ {−1, 1}, the best possible Krivine

rounding scheme occurs when k = 1 and f(x) = g(x) =
sign(x). This is the intuition leading to König’s conjec-

ture. The following simple corollary of Theorem 1.3 says

that among all one dimensional Krivine rounding schemes

f, g : R→ {−1, 1} we indeed have c(f, g) � c(sign, sign),
so it does not pay off to take partitions of R which are more

complicated than the half-line partitions.

Lemma 2.4: Let f, g : R → R be a Krivine rounding

scheme. Then c(f, g) � 2
π log

(
1 +

√
2
)
.

Proof: Denote c = c(f, g) and assume for contradiction

that c > 2
π log

(
1 +

√
2
)
. Let r be the radius of convergence

of the power series of H−1
f,g given in (9). Due to (10) we

know that r � c > 2
π log

(
1 +

√
2
)
. Denote

α
def
=

Hf,g(i)

i

(4)∧(5)∧(8)
=

BK(f, g)

π
√
2

. (17)

By Theorem 1.3 we have |α| � 2
π log

(
1 +

√
2
)
< r, and

therefore H−1
f,g is well defined at the point iα ∈ C. Thus,

1
(17)
=

H−1
f,g(iα)

i

(9)
=

∞∑
j=0

(−1)ja2j+1α
2j+1

�
∞∑
j=0

|a2j+1| · |α|2j+1.

By the definition of c in (10) we deduce that c � |α| �
2
π log

(
1 +

√
2
)
, as required.

The conceptual message behind Theorem 1.1 is that,

despite the above satisfactory state of affairs in the one

dimensional case, it does pay off to use more complicated

higher dimensional partitions. Specifically, our proof of

Theorem 1.1 uses the following rounding procedure. Let

c, p ∈ (0, 1) be small enough absolute constants. Given

{xr}mr=1, {ys}ns=1 ⊆ Sm+n−1, we preprocess them to obtain

new vectors {ur = ur(p, c)}mr=1, {vs = vs(p, c)}ns=1 ⊆
Sm+n−1. Due to certain technical complications, these

new vectors are obtained via a procedure that is simi-

lar to the preprocessing step (Step 1) described above,



but is not identical to it. We refer to Section 5 for a

precise description of the preprocessing step that we use

(we conjecture that this complication is unnecessary; see

Conjecture 5.5). Once the new vectors {ur}mr=1, {vs}ns=1 ⊆
Sm+n−1 have been constructed, we take an 2 × (m + n)
matrix G with entries that are i.i.d. standard Gaussian ran-

dom variables, and we consider the random vectors {Gur =
((Gur)1, (Gur)2)}mr=1, {Gvs = ((Gvs)1, (Gvs)2)}ns=1 ⊆
R

2. Having thus obtained new vectors in R
2, with proba-

bility (1 − p) we “round” our initial vectors to the signs

{sign((Gur)2)}mr=1, {sign((Gvs)2)}ns=1 ⊆ R, while with

probability p we round xr to +1 if

(Gur)2 � c
(
((Gur)1)

5 − 10((Gur)1)
3 + 15(Gur)1

)
.

(18)

and we round xr to −1 if

(Gur)2 < c
(
((Gur)1)

5 − 10((Gur)1)
3 + 15(Gur)1

)
.

(19)

For concreteness, at this juncture it suffices to describe our

rounding procedure without explaining how it was derived

— the origin of the fifth degree polynomial appearing in (18)

and (19) will become clear in Section 4 and Section 5. The

rounding procedure for ys is identical to (18) and (19), with

(Gvs)1, (Gvs)2 replacing (Gur)1, (Gur)2, respectively.

Figure 1. The rounding procedure used in the proof of Theorem 1.1
relies on the partition of R2 depicted above. After a preprocessing step,
high dimensional vectors are projected randomly onto R2 using a matrix
with i.i.d. standard Gaussian entries. With a certain fixed probability, if the
projected vector falls above the graph y = c(x5 − 10x3 + 15x) then it is
assigned the value +1, and otherwise it is assigned the value −1.

3. THE TIGER PARTITION AND DIRECTIONS FOR FUTURE

RESEARCH

The partition of the plane described in Figure 1 leads to

a proof of Theorem 1.1, but it is not the optimal partition

for this purpose. It makes more sense to use the partitions

corresponding to maximizers fmax, gmax : R2 → {−1, 1} of

Krivine’s bilinear form BK as defined in (5), i.e.,

BK(fmax, gmax) = max
f,g:R2→{−1,1}

BK(f, g) =

max
f,g:R2→{−1,1}

∫
R2

∫
R2

f(x)g(y)e−
‖x‖22+‖y‖22

2 sin(〈x, y〉)dxdy.

(20)

A straightforward weak compactness argument shows that

the maximum in (20) is indeed attained (see Section 4).

Given f : R2 → {−1, 1} define σ(f) : R2 → {−1, 1} by

σ(f)(y)
def
= sign

(∫
R2

f(x)e−‖x‖
2
2/2 sin (〈x, y〉) dx

)
.

Then

σ(fmax) = gmax and σ(gmax) = fmax. (21)

Given f : R2 → {−1, 1} we can then hope to approach fmax

by considering the iterates {σ2j(f)}∞j=1. If these iterates

converge to f∞ then the pair of functions {f∞, σ(f∞)}
would satisfy the equations (21). One can easily check

that σ(f0) = f0 when f0 : R
2 → {−1, 1} is given

by f0(x1, x2) = sign(x2). But, we have experimentally

applied the above iteration procedure to a variety of initial

functions f �= f0 (both deterministic and random choices),

and in all cases the numerical computations suggest that

the iterates {σ2j(f)}∞j=1 converge to the function f∞ that

is depicted in Figure 2 and Figure 3 (the corresponding

function g∞ = σ(f∞) is different from f∞, but has a similar

structure).

Figure 2. The “tiger partition”: a depiction of the limiting function f∞
restricted to the square [−7, 7] × [−7, 7] ⊆ R2, based on numerical
computations. The two shaded regions correspond to the points where f∞
takes the values +1 and −1.

Figure 3. A zoomed-out view of the tiger partition: a depiction of the
limiting function f∞ restricted to the square [−20, 20]× [−20, 20] ⊆ R2,
based on numerical computations.



Question 3.1: Find an analytic description of the function

f∞ from Figure 2 and Figure 3. Our numerical computations

suggest that the iterates {σ2j(f)}∞j=1 converge to f∞ for (al-

most?) all initial data f : R2 → {−1, 1}. Can this statement

be made rigorous? If so, is it the case the {f∞, σ(f∞)} are

maximizers of the bilinear form BK? We conjecture that the

answer to this question is positive.

Question 3.2: Analogously to the above planar computa-

tions, can one find an analytic description of the maximizers

f
(n)
max, g

(n)
max : Rn → {−1, 1} of the n-dimensional version of

König’s bilinear form BK? If so, does {f (n)
max, g

(n)
max} form an

alternating Krivine rounding scheme (recall Definition 2.2)?

We do not have sufficient data to conjecture whether the

answer to Question 3.2 is positive or negative. But, we note

that if {f (n)
max, g

(n)
max} were an alternating Krivine rounding

scheme then

KG = sup
n∈N

(√
2π

)n
BK

(
f
(n)
max, g

(n)
max

) = sup
n∈N

(√
2π

)n
‖TK‖L∞(Rn)→L1(Rn)

.

(22)

Indeed, assuming that {f (n)
max, g

(n)
max} is an alternating Krivine

rounding scheme the upper bound in (22) follows from

Corollary 2.3 and the identity (11). For the reverse inequality

in (22) we proceed as in [10]. Using (3) with f, g : Rn →
Sn−1 given by f(x) = g(x) = x/‖x‖2, we see that

KG �
∫
Rn

∫
Rn K(x, y) 〈x,y〉

‖x‖2‖y‖2 dxdy

‖TK‖L∞(Rn)→L1(Rn)

, (23)

and we conclude that (22) is true since by equation

(2.3) in [10] the integral in the numerator of (23) equals

2n/2πn(1− 1/n+O(1/n2)).

4. A COUNTEREXAMPLE TO KÖNIG’S CONJECTURE

In this section, we present a counterexample to König’s

conjecture. We construct a pair of functions f, g : R2 →
{−1, 1} such that BK(f, g) > BK(f0, g0). In the conference

version of this paper, we omit the proof of this result.

In our construction, we use Hermite polynomials (see [2,

Sec. 6.1]). We let {hm : R → R}∞m=0 denote the sequence

of Hermite polynomials normalized so that they form an

orthonormal basis with respect to the measure on R whose

density is x 	→ e−x2

. Explicitly,

hm(x)
def
=

(−1)m√
2mm!

√
π
· ex2 dm

dxm

(
e−x2

)
, (24)

so that
∫
R
hm(x)hk(x)e

−x2

dx = δmk. We consider the fifth

Hermite polynomial h5

h5(x) =
4x5 − 20x3 + 15x

2 4
√
π
√
15

.

(we discuss the reason why we consider h5 in the full version

of this paper; see also Remark 4.1).

For η ∈ (0, 1) let fη : R2 → {−1, 1} be given by

fη(x1, x2)
def
=

{
1 x2 � ηh5(x1),
−1 x2 < ηh5(x1).

(25)

Note that since h5 is odd, so is fη (almost surely). For z ∈ C

with |
(z)| < 1 we define

Hη(z)
def
=

π

2
Hfη,fη (z) (26)

=

∫
R2×R2 fη(x)fη(y)e

−‖x‖22−‖y‖22+2z〈x,y〉
1−z2 dxdy

2π(1− z2)
.

Lemma 4.1: Hη is analytic on the strip

S
def
= {z ∈ C : |
(z)| < 1} . (27)

Moreover, for all a+ bi ∈ S we have

|Hη(a+ bi)| � π
(
(1 + a)2 + b2

) (
(1− a)2 + b2

)
2(1− a2)

√
(1− a2)2 + b4 + 2(1 + a2)b2

.

(28)

Lemma 4.2: For every z ∈ C with |
(z)| < 1 we have

H0(z) = arcsin(z).
Theorem 4.3: There exists η0 > 0 such that for all η ∈

(0, η0) we have

Hη(i)

i
∈

(
log

(
1 +

√
2
)
,∞

)
.

Theorem 4.3 implies that the answer to König’s problem

is negative. Indeed,

Hη(i)

i

(26)
=

1

4π

∫
R2×R2

fη(x)fη(y)e
− ‖x‖

2
2+‖y‖22
2 sin (〈x, y〉) dxdy

=
BK(fη, fη)

4π
.

Since arcsin(i) = i log
(
1 +

√
2
)
, it follows from

Lemma 4.2 and Theorem 4.3 that for every η ∈ (0, η0)
we have BK(fη, fη) > BK(f0, f0). Since f0(x1, x2) =
sign(x2), the claimed negative answer to König’s problem

follows.

In the proof of Theorem 4.3 presented in the full version

of the paper, we consider the function ϕ(η) = 4πHη(i)/i
and show that ϕ′′(0) = 0 and ϕ′′′′(0) = 38400

√
2. We

conclude that ϕ(η) = ϕ(0)+1600
√
2η4+O

(
η6

)
as η → 0.

Therefore,

Hη(i)

i
=

ϕ(η)

4π
>

ϕ(0)

4π
= log

(
1 +

√
2
)
,

when η is small enough.

Remark 4.1: Clearly, we did not arrive at the above
construction by guessing that the fifth Hermite polynomial
h5 is the correct choice in (25). We arrived at this choice as
the simplest member of a general family of ways to perturb
the function (x1, x2) 	→ sign(x2). We discuss our choice in
the full version of this paper.



5. PROOF THAT KG < π

2 log(1+
√
2)

We will fix from now on some η ∈ (0, η0), where η0 is

as in Theorem 4.3. For p ∈ [0, 1] define

Fp
def
= (1− p)H0 + pHη,

where Hη is as in (26). In what follows we will denote the

unit disc in C by

D
def
= {z ∈ C : |z| < 1} .

Theorem 5.1: The exists p0 > 0 such that for all p ∈
(0, p0) we have Fp(S) ⊇ 9

10D and F−1
p is well defined

and analytic on 9
10D. Moreover, if we write F−1

p (z) =∑∞
k=1 ak(p)z

k then there exists γ = γp ∈ [0,∞) satisfying

∞∑
k=1

|ak(p)|γk = 1, (29)

and

γ > log
(
1 +

√
2
)
= 0.88137... (30)

Assuming Theorem 5.1 for the moment, we will now

deduce Theorem 1.1.

Proof of Theorem 1.1: Fix p ∈ (0, p0) and let γ > 0 be

the constant from Theorem 5.1. Due to (29),
∑∞

k=1 ak(p)γ
k

converges absolutely, and therefore F−1
p is analytic and well

defined on γD. For small enough p some of the coefficients

{ak(p)}∞k=1 are negative (since the third Taylor coefficient

of H−1
0 (z) = sin z is negative), implying that for every

r ∈ [0, 1] we have

F−1
p (rγ) =

∞∑
k=1

ak(p)r
kγk ∈ (−1, 1) ⊆ S. (31)

Let H be a Hilbert space. Define two mappings Lp, Rp :

H →⊕∞
k=1H⊗k def

= K by

Lp(x)
def
=

∞∑
k=1

√
|ak(p)|γk/2x⊗k;

Rp(x)
def
=

∞∑
k=1

sign(ak(p))
√
|ak(p)|γk/2x⊗k.

By (29), if ‖x‖H = 1 then ‖Lp(x)‖K = ‖Rp(x)‖K = 1.

Moreover, if ‖x‖H = ‖y‖H = 1 then

〈Lp(x), Rp(y)〉 =
∞∑
k=1

ak(p)γ
k〈x, y〉k = F−1

p (γ〈x, y〉) (31)∈ S.

(32)

For N ∈ N let G : RN → R
2 be a 2×N random matrix

with i.i.d. standard Gaussian entries. Let g1, g2 ∈ R
2 be

the first two columns of G (i.e., g1, g2 are i.i.d. standard

two dimensional Gaussian vectors). If x, y ∈ R
N are unit

vectors satisfying 〈x, y〉 ∈ S then by rotation invariance we

have

E

[
fη

(
1√
2
Gx

)
fη

(
1√
2
Gy

)]
= (33)

E

[
fη

(
g1√
2

)
fη

(
〈x, y〉 g1√

2
+

√
1− 〈x, y〉2 g2√

2

)]
=

1

(2π)2

×
∫

R2×R2

fη

(
u√
2

)
fη

(
〈x, y〉 u√

2
+

√
1− 〈x, y〉2 v√

2

)

· e− ‖u‖
2
2+‖v‖22
2 dudv =

2

π
Hη(〈x, y〉),

where we made the change of variable u =
√
2u′ and

v =
(√

2v′ −√2〈x, y〉u′) /√1− 〈x, y〉2, whose Jacobian

is 4/(1− 〈x, y〉2).
Fix an m × n matrix A = (aij) and let

x1, . . . , xm, y1, . . . , yn ∈ H be unit vectors satisfying

m∑
i=1

n∑
j=1

aij〈xi, yj〉 = M
def
= max

m∑
i=1

n∑
j=1

aij〈ui, vj〉, (34)

where the maximum is taken over all unit vectors

u1, . . . , um, v1, . . . , vn in H. Consider the unit vectors

{Lp(xi)}mi=1 ∪ {Rp(yj)}nj=1, which we can think of as

residing in R
N for N = m + n. By (32) we have

〈Lp(xi), Rp(yj)〉 ∈ S for all i ∈ {1, . . . ,m} and j ∈
{1, . . . , n}, so that we may use the identity (33) for these

vectors. Let λ be a random variable satisfying Pr[λ = 1] =
p, Pr[λ = 0] = 1− p. Assume that λ is independent of G.

Define random variables ε1, . . . , εm, δ1, . . . , δn ∈ {−1, 1}
by

εi = (1− λ)f0

(
1√
2
GLp(xi)

)
+ λfη

(
1√
2
GLp(xi)

)

and

δj = (1− λ)f0

(
1√
2
GRp(yj)

)
+ λfη

(
1√
2
GRp(yj)

)
.

Then,

max
σ1,...,σm,∈{−1,1}
τ1,...,τn∈{−1,1}

m∑
i=1

n∑
j=1

aijσiτj � E

⎡
⎣ m∑

i=1

n∑
j=1

aijεiδj

⎤
⎦

(33)
=

2

π

m∑
i=1

n∑
j=1

aij

(
(1− p)H0

(〈Lp(xi), Rp(yj)〉
)

+ pHη

(〈Lp(xi), Rp(yj)〉
))

=
2

π

m∑
i=1

n∑
j=1

aijFp

(〈Lp(xi), Rp(yj)〉
)

(32)
=

2

π

m∑
i=1

n∑
j=1

aijFp

(
F−1
p γ〈xi, yj〉

) (34)
=

2γ

π
M.



This gives the bound KG � π
2γ

(30)
< π

2 log(1+
√
2)

, as required.

Our goal from now on will be to prove Theorem 5.1.

Lemma 5.2: H0 is one-to-one on S and H0(S) ⊇ D.

Proof: The fact that H0 is one-to-one on S is a

consequence of Lemma 4.2. To show that H0(S) ⊇ D

we need to prove that if a, b ∈ R and a2 + b2 < 1 then

|
 (sin (a+ bi)) | < 1. Now,

|
 (sin (a+ bi))| = eb + e−b

2
| sin a|. (35)

Using the inequality | sin a| � |a|, we see that it suffices to

show that for all x ∈ (0, 1) we have

ex + e−x

2

√
1− x2 < 1 (36)

By Taylor’s formula we know that there exists y ∈ [0, x]
such that

ex + e−x

2
= 1 +

x2

2
+

x4

24
· e

y + e−y

2
(37)

� 1 +
x2

2
+

x4

24
· e+ e−1

2
< 1 +

x2

2
+

x4

12
.

Note that(
1 +

x2

2
+

x4

12

)2 (
1− x2

)
= 1−7x4

12
−x6

3
−11x8

144
−x10

144
< 1,

which together with (37) implies (36).

Lemma 5.3: For every r ∈ (0, 1) there exists pr ∈ (0, 1)
and

a bounded open subset Ωr ⊆ S with Ωr ⊆ S such that

for all p ∈ (0, pr) the function Fp is one-to-one on Ωr and

Fp(Ωr) = rD. Thus F−1
p is well defined and analytic on

rD.

Proof: For n ∈ N consider the set

En =

{
z ∈ C : |
(z)| < 1− 1

n
∧ |�(z)| < n

}
.

Using Lemma 5.2, fix a large enough n ∈ N so that

H0(En) ⊇ rD. The bound (28) implies that there exists

M > 0 such that |Hη(z)| � M for all η > 0 and

z ∈ ∂En+1. By Lemma 5.2, H0 takes a value ζ ∈ rD
exactly once on En+1, and this occurs at some point in En.

Hence,

m
def
= min

ζ∈rD

z∈∂En+1

|H0(z)− ζ| > 0.

Define pr = m/(2M).
Fix ζ ∈ rD. If p ∈ (0, pr) then for every z ∈ ∂En+1

we have |p (Hη(z)−H0(z))| < m
2M (|Hη(z)|+ |H0(z)|) �

m � |H0(z)− ζ|. Rouché’s theorem now implies that the

number of zeros of H0−ζ in En+1 is the same as the number

of zeros of H0−ζ+p (Hη −H0) = Fp−ζ in En+1. Hence

Fp takes the value ζ exactly once in En+1. Since ζ was an

arbitrary point in rD, we can define Ωr = F−1
p (rD).

Lemma 5.4: For every r ∈ (0, 1) there exists Cr ∈ (0,∞)
such that, using the notation of Lemma 5.3, for every p ∈
(0, pr) and z ∈ rD we have∣∣F−1

p (z)− sin z − p (z −Hη(sin z)) cos z
∣∣ � Crp

2. (38)

Proof: Note that

z = Fp

(
F−1
p (z)

)
= (1−p)H0

(
F−1
p (z)

)
+pHη

(
F−1
p (z)

)
.

(39)

By differentiating (39) with respect to p, we see that

0 = Hη

(
F−1
p (z)

)−H0

(
F−1
p (z)

)
+

(
d

dp
F−1
p (z)

)

×
(
(1− p)

dH0

dz

(
F−1
p (z)

)
+ p

dHη

dz

(
F−1
p (z)

))
= Hη

(
F−1
p (z)

)−H0

(
F−1
p (z)

)
+

(
d

dp
F−1
p (z)

)
dFp

dz

(
F−1
p (z)

)

= Hη

(
F−1
p (z)

)−H0

(
F−1
p (z)

)
+

d
dpF

−1
p (z)

d
dz

(
F−1
p (z)

) .
Hence,

d

dp
F−1
p (z) =

(
H0

(
F−1
p (z)

)−Hη

(
F−1
p (z)

)) d

dz

(
F−1
p (z)

)
.

(40)

If we now differentiate (40) with respect to p, while us-

ing (40) whenever the term d
dpF

−1
p (z) appears, we obtain

the following identity.

d2

dp2
F−1
p (z) =

[dH0

dz

(
F−1
p (z)

)− dHη

dz

(
F−1
p (z)

)
+

(
H0

(
F−1
p (z)

)−Hη

(
F−1
p (z)

)) d2

dz2
(
F−1
p (z)

)]
· (H0

(
F−1
p (z)

)−Hη

(
F−1
p (z)

)) d

dz

(
F−1
p (z)

)
. (41)

Take M = Mr > 0 such that for all w ∈ Ωr we have

max

{
|H0(w)|, |Hη(w)|,

∣∣∣∣dH0

dz
(w)

∣∣∣∣ ,
∣∣∣∣dHη

dz
(w)

∣∣∣∣
}

� M.

(42)

Note that (42) applies to w = F−1
p (z) for z ∈ rD. We also

define R = Rr = maxw∈∂Ω(1+r)/2
|w|. Then for ζ ∈ 1+r

2 D

we have
∣∣F−1

p (ζ)
∣∣ � R. If z ∈ rD then by the Cauchy

formula we have∣∣∣∣ ddz (
F−1
p (z)

)∣∣∣∣ =
∣∣∣∣∣∣∣

1

π(r + 1)i

∮
1+r
2 ∂D

F−1
p (ζ)

(ζ − z)2
dζ

∣∣∣∣∣∣∣
� max

ζ∈ 1+r
2 ∂D

∣∣F−1
p (ζ)

∣∣
(|ζ| − |z|)2 � 4R

(1− r)2
.

Similarly,

∣∣∣∣ d2dz2
F−1
p (z)

∣∣∣∣ =
∣∣∣∣∣∣∣

2

π(r + 1)i

∮
1+r
2 ∂D

F−1
p (ζ)

(ζ − z)3
dζ

∣∣∣∣∣∣∣ �
16R

(1− r)3
.



These estimates, in conjunction with the identity (41), imply

the following bound:∣∣∣∣ d2dp2
F−1
p (z)

∣∣∣∣ �
(
2M + 2M

16R

(1− r)3

)
2M

4R

(1− r)2
.

By the Taylor formula we deduce that∣∣∣∣∣F−1
p (z)− F−1

0 (z)− p
d

dp
F−1
p (z)

∣∣∣∣
p=0

∣∣∣∣∣ � Crp
2,

where Cr = 8M2R
(1−r)2

(
1 + 16R

(1−r)3

)
. It remains to note

that due to Lemma 4.2 and the identity (40), we have
d
dpF

−1
p (z)

∣∣∣
p=0

= (z −Hη(sin z)) cos z.

Proof of Theorem 5.1: We will fix from now on some

r ∈ (9/10, 1). Note that since the Hermite polynomial h5 is

odd, so is Hη . Hence also Fp is odd, and therefore ak(p) = 0
for even k. For z ∈ rD write φ(z) = (z −Hη(sin z)) cos z.

Consider the power series expansions

sin z =
∞∑
k=0

b2k+1z
2k+1 =

∞∑
k=0

(−1)k
(2k + 1)!

z2k+1,

and

φ(z) =
∞∑
k=0

c2k+1z
2k+1. (43)

By the Cauchy formula we have for every k ∈ N ∪ {0},
|a2k+1(p)− b2k+1 − pc2k+1| = (44)∣∣∣∣∣∣

1

2πir

∮
r∂D

F−1
p (z)− sin z − pφ(z)

z2k+2
dz

∣∣∣∣∣∣
(38)

� Crp
2

r2k+2
.

Note that by Lemma 4.1 the radius of convergence

of the series in (43) is at least 1, and therefore∑∞
k=0 |c2k+1|(9/10)2k+1 <∞. Hence,

∞∑
k=0

|a2k+1(p)|
(

9

10

)2k+1
(44)

�
∞∑
k=0

(9/10)2k+1

(2k + 1)!
(45)

− p
∞∑
k=0

|c2k+1|
(

9

10

)2k+1

− Crp
2

r

∞∑
k=0

(
9

10r

)2k+1

=
e9/10 − e−9/10

2
−O(p) > 1.02−O(p).

By continuity, it follows from (45) that provided p is small

enough there exists γ > 0 satisfying the identity (29). Our

goal is to prove (30), so assume for contradiction that γ �
log

(
1 +

√
2
)
< 9/10. Note that since r ∈ (9/10, 1) we

have
γ

r
�

10 log
(
1 +

√
2
)

9
<

49

50
. (46)

Fix ε > 0 that will be determined later. We have seen in

Lemma 5.2 that sin
(

9
10D

) ⊆ S. Since Hη is analytic on S,

it follows that φ is analytic on 9
10D. Since γ < 9/10, there

exists n ∈ N satisfying
∞∑

k=n+1

|c2k+1|γ2k+1 <
ε

2
. (47)

There exists p = p(ε) such that for all p ∈ (0, p(ε)) we have

p|c2k+1| < 1
2 |b2k+1| for all k ∈ {0, . . . , n}. In particular, we

have sign(b2k+1 + pc2k+1) = sign(b2k+1) = (−1)k. Now,∣∣∣1− F−1
p (iγ)

i

∣∣∣ (48)

(29)
=

∣∣∣ ∞∑
k=0

(|a2k+1(p)| − (−1)ka2k+1(p)
) · γ2k+1

∣∣∣
(44)

�
∞∑
k=0

∣∣∣|b2k+1 + pc2k+1| − (−1)k(b2k+1 + pc2k+1

)∣∣∣ · γ2k+1

+ 2
∞∑
k=0

Crp
2

r2k+2
γ2k+1.

To estimate the two terms on the right hand side on (48),

note first that

2
∞∑
k=0

Crp
2

r2k+2
γ2k+1

(46)

� 2Cr

r
p2

∞∑
k=0

(
49

50

)2k+1

� C ′rp
2,

(49)

where C ′r depends only on r. Since p ∈ (0, p(ε)) we know

that for all k ∈ {0, . . . , n} we have |b2k+1 + pc2k+1| =
(−1)k (b2k+1 + pc2k+1). Hence the first n terms of the first

sum in the right hand side of (48) vanish. Therefore,

∞∑
k=0

∣∣|b2k+1 + pc2k+1| − (−1)k (b2k+1 + pc2k+1)
∣∣ γ2k+1

=
∞∑

k=n+1

∣∣|b2k+1 + pc2k+1| − |b2k+1| − (−1)kpc2k+1

∣∣ γ2k+1

� 2p
∞∑

k=n+1

|c2k+1|γ2k+1
(47)
< pε. (50)

By substituting (49) and (50) into (48), we see that if we

define β = F−1
p (iγ)− i then

|β| � C ′rp
2 + pε. (51)

Let L0 be the Lipschitz constant of H0 on i+ 1
2D ⊆ S (the

disc of radius 1
2 centered at i). Similarly let Lη be the Lips-

chitz constant of Hη on i+ 1
2D, and set L = max{L0, Lη}. It

follows that Fp = (1−p)H0+pHη is L-Lipschitz on i+ 1
2D.

Due to (51), if p is small enough then i+ β ∈ i+ 1
2D, and

therefore,

log
(
1 +

√
2
)
� γ =

Fp(β + i)

i
� Fp(i)

i
− L|β|

(51)

� (1− p)H0(i) + pHη(i)

i
− Lp (C ′rp+ ε)

= (1− p) log
(
1 +

√
2
)
+ p

Hη(i)

i
− Lp (C ′rp+ ε) .



This simplifies to give the following estimate:

Hη(i)

i
� log

(
1 +

√
2
)
+ LC ′rp+ Lε.

Since this is supposed to hold for all ε > 0 and p ∈ (0, p(ε)),
we arrive at a contradiction to Theorem 4.3.

Remark 5.1: An inspection of the proof of Theorem 1.1
shows that the only property of Hη that was used is that
it is a counterexample to König’s problem. In other words,
assume that f, g : R2 → {−1, 1} are measurable functions
and consider the function H : S → C given by H(z) =

1
2π(1−z2)

∫
R2×R2 f(x)g(y) exp

(−‖x‖22−‖y‖22+2z〈x,y〉
1−z2

)
dxdy.

Assume that BK(f, g) > 4π log
(
1 +

√
2
)
, where BK is

König’s bilinear form given in (5). Then one can repeat the
proof of Theorem 1.1 with Hη replaced by H , arriving at
the same conclusion.

Conjecture 5.5: Recalling Definition 2.1 and Corol-

lary 2.3, we conjecture that for small enough η ∈ (0, 1),
the pair of functions f = g = fη : R

2 → {−1, 1} is a

Krivine rounding scheme for which we have c(fη, fη) >
2
π log

(
1 +

√
2
)
. In other words, we conjecture that in order

to prove Theorem 1.1 we do not need to use a convex

combination of H0 and Hη as we did above, but rather use

only Hη itself.
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